Tag: thermochemistry


A Python program to compute quasi-harmonic thermochemical data and potential energy surface diagrams from frequency calculations at a given temperature/concentration, corrected for the effects of vibrational scaling-factors. All (electronic, translational, rotational and vibrational) partition functions are recomputed and can be correct to any temperature or concentration. The first public version of GoodVibes was released in 2016 and it has undergone several revisions since, during which time it has been used by many groups around the world. The program is described in the publication: GoodVibes: automated thermochemistry for heterogeneous computational chemistry data

[Zenodo] [GitHub]
Elucidating the chemical pathways responsible for the sooting tendency of 1 and 2- phenylethanol.

Etz, B. D.; Fioroni, G. M.; Messerly, R. A.; Rahimi, M. J.; St. John, P. C.; Robichaud, D. J.; Christensen, E. D.; Beekley, B. P.; McEnally, C. S.; Pfefferle, L. D.; Xuan, Y.; Vyas, S.; Paton, R. S.; McCormick, R. L.; Kim, S. Combust. Inst. 2020

GoodVibes: automated thermochemistry for heterogeneous computational chemistry data.

Luchini, G.; Alegre-Requena, J. V.; Funes-Ardoiz, I.; Paton, R. S. F1000Research 2020, 9, 291

Prediction of homolytic bond dissociation enthalpies for organic molecules at near chemical accuracy with sub-second computational cost.

St John, P.; Guan, Y.; Kim, Y.; Kim, S.; Paton, R. S. Nat. Commun. 2020, 11, 2328

Hydrogen-Bond Dependent Conformational Switching: a Computational Challenge from Experimental Thermochemistry.

Luccarelli, J.; Paton, R. S. J. Org. Chem. 2019, 84, 613–621

Experimental and Theoretical Insight into the Soot Tendencies of the Methylcyclohexene Isomers.

Kim, S.; Fiorinia, M. Park, J.-W.; Robichaud, D. J.; Dhrubajyoti, D. D.; St. John, P. C.; Lu, T.; McEnally, C.; Pfefferle, L. D.; Paton, R. S.; Foust, T. D.; McCormick, R. L. Proc. Combust. Inst. 2019, 37, 1083–1090

Experimental and Theoretical Study of Oxidative Stability of Alkylated Furans Used as Gasoline Blend Components.

Christensen, E.; Fioroni, G. M.; Kim, S.; Fouts, L.; Gjersing, E.; Paton, R. S.; McCormick, R. Fuel 2018, 212, 576–585

Furan Production from Light Oxygenates in HZSM-5.

Kim, S.; Evans, T. J.; Mukarakate, C.; Bu, L.; Beckham, G. T.; Nimlos, M. R.; Paton, R. S.; Robichaud, D. J. ACS Sustain. Chem. Eng. 2016, 4, 2615–2623

Ethanol Dehydration in HZSM-5 Studied by Density Functional Theory: Evidence for a Concerted Processes.

Kim, S.; Robichaud, D. J.; Beckham, G. T.; Paton, R. S.; Nimlos, M. R. J. Phys. Chem. A 2015, 119, 3604–3614

A Mechanistic Investigation of Acid-Catalyzed Cleavage of Aryl-Ether Linkages: Implications For Lignin Depolymerization In Acidic Environments.

Sturgeon, M. R.; Kim, S.; Lawrence, K.; Paton, R. S.; Chmely, S. C.; Nimlos, M. R.; Foust, T. D.; Beckham, G. T. ACS Sustain. Chem. Eng. 2014, 2, 472–485

Unusual Base-Induced Rearrangement of Exo-9-Oxabicyclo[4.2.1]Non-7-Ene Oxide To Exo-8-Hydroxybicyclo[3.3.0]Octan-2-One.

Hodgson, D. M.; Stent, M. A. H.; Paton, R. S.; Wilson, F. X. Heterocycles (Albert Padwa Birthday Issue) 2012, 84, 625–635

Computational Study of Bond Dissociation Enthalpies For a Large Range of Native and Modified Lignins.

Kim, S.; Chmely, S. C.; Nimlos, M. R.; Bomble, Y. J.; Foust, T. D.; Paton, R. S.; Beckham, G. T. J. Phys. Chem. Lett. 2011, 2, 2846–2852

Experimental Diels-Alder Reactivities of Cycloalkenones and Cyclic Dienes Explained Through Transition State Distortion Energies.

Paton, R. S.; Kim, S.; Ross, A. G.; Danishefsky, S. J.; Houk, K. N. Angew. Chem. Int. Ed. 2011, 50, 10366–10368