Mechanistic Investigation of Rh (I)-Catalyzed Asymmetric Suzuki-Miyaura Coupling with Racemic Allyl Halides

van Dijk, L.; Ardkhean, R.; Sidera, M.; Karabiyikoglu, S.; Sari, O.; Claridge, T. D. W.; Paton, R. S.; Fletcher, S. P. Nat. Catal. 2021, accepted



A Python program to compute quasi-harmonic thermochemical data and potential energy surface diagrams from frequency calculations at a given temperature/concentration, corrected for the effects of vibrational scaling-factors. All (electronic, translational, rotational and vibrational) partition functions are recomputed and can be correct to any temperature or concentration. The first public version of GoodVibes was released in 2016 and it has undergone several revisions since, during which time it has been used by many groups around the world. The program is described in the publication: GoodVibes: automated thermochemistry for heterogeneous computational chemistry data

Asymmetric Total Synthesis and Determination of the Absolute Configuration of (+)-Srilankenyne via Sequence-sensitive Halogenations Guided by Conformational Analysis

Jang, H.; Kwak, S. Y.; Lee, D.; Alegre-Requena, J. V.; Kim, H.; Paton, R. S.; Kim, D. Org. Lett. 2021, 23, 1321–1326

pyQRC logo


QRC is an abbreviation of Quick Reaction Coordinate. This provides a quick alternative to IRC (intrinsic reaction coordinate) calculations. The program will read a Gaussian frequency calculation and will create a new input file which has been projcted from the final coordinates along the Hessian eigenvector with a negative force constant. The magnitude of displacement can be adjusted on the command line. By default the projection will be in a positive sense (in relation to the imaginary normal mode) and the level of theory in the new input file will match that of the frequency calculation. A common application for pyQRC is in distorting ground state structures to remove annoying imaginary frequencies after reoptimization. This code has, in some form or other, been in use since around 2010.

Unconventional Reactivity of Ethynylbenziodoxolone (EBX) Reagents and Thiols: Scope and Mechanism

Liu, B. Alegre-Requena, J. V.; Paton, R. S.; Miyake, G. Chem. Eur. J. 2020, 26, 2386–2394

An Alkyne Linchpin Strategy for Drug: Pharmacophore Conjugation: Experimental and Computational Realization of a meta-Selective Inverse Sonogashira Coupling

Porey, S.; Zhang, X.; Bhowmick, S.; Singh, V. K.; Guin, S.; Paton, R. S.; Maiti, D. J. Am. Chem. Soc. 2020, 142, 3762–3774

Cofactor-independent pinacolase directs non-Diels-Alderase biogenesis of the Brevianamides

Ye, Y.; Du, L.; Zhang, X.; Newmister, S. A.; McCauley, M.; Alegre-Requena, J. V.; Zhang W.; Mu, S.; Minami, A.; Fraley, A. E.; Adrover-Castellano, M. L.; Carney, N.; Shende, V. K.; Oikawa, H.; Kato H.; Tsukamoto, S.; Paton, R. S.; Williams R. M.; , Sherman, D. H.; Li, S. Nat. Catal. 2020, 3, 497–506

Comparison of Molecular Recognition of Trimethyllysine and Trimethylthialysine by Epigenetic Reader Proteins

Hintzen, J. C. J.; Poater, J.; Kumar, K.; Al Temimi, A. H. K.; Pieters, B. J. G. E.; Paton, R. S.; Bickelhaupt, F. M.; Mecinović, J. Molecules 2020, 25, 1918

Mechanism of biomolecular recognition of trimethyllysine by the fluorinated aromatic cage of KDM5A PHD3 finger

Pieters, B. J. G. E., Wuts, M. H. M., Poater, J.; Kumar, K.; White, P. B.; Kamps, J. J. A. G.; Sherman, W; Pruijn, G. J. M.; Paton, R. S.; Beuming, T.; Bickelhaupt, F. M.; Mecinović, J. Commun. Chem. 2020, 3, 69

Elucidating the chemical pathways responsible for the sooting tendency of 1 and 2- phenylethanol

Etz, B. D.; Fioroni, G. M.; Messerly, R. A.; Rahimi, M. J.; St. John, P. C.; Robichaud, D. J.; Christensen, E. D.; Beekley, B. P.; McEnally, C. S.; Pfefferle, L. D.; Xuan, Y.; Vyas, S.; Paton, R. S.; McCormick, R. L.; Kim, S. Combust. Inst. 2020